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Relaxed continuous time Markov chains

Deep generative models such as the variational autoencoder [1] have led to
breakthroughs in generating synthetic data from complicated distributions, e.g.
natural images. The key ingredient of this success story is a newway of parameter
learning via sampling-based variational inference [2]. Suppose one is interested
in an intractable Bayesian posterior p(x | y) for given data y. The goal is
to approximate p(x | y) by a tractable parametric family qϕ(x) where ϕ are
variational parameters. To find the best value of ϕ one generates samples for a
given ϕi. These samples are used to estimate the dissimilarity between p(x | y)
and qϕi

(x) as well as the corresponding gradient. This allows to improve the
estimate of ϕ via stochastic gradient descent.

The approach sketched above is particularly effective for reparametrizeable distri-
butions. This means that there exists a random variable Z and a function g such
that X := g(Z, ϕ) has the density qϕ(x). A simple example would be a normally
distributed random variable X ∼ N (µ, σ2) that can be written as X = µ+ σZ
for Z ∼ N (0, 1). The main advantage of reparametrizaion is that it separates the
model from the source of randomness. This allows to use standard deep learning
libraries such as PyTorch or Tensorflow for automatic gradient computation
[3]. Initially, reparametrization has been limited to continuous distributions.
Recently, relaxation techniques such as the Gumbel-Softmax approach have been
developed that approximate a discrete distribution by a continuous one. The
relaxed distribution is then accessible to reparametrization [4, 5].

Continuous relaxation of a categorical distribution. Image rom [4].

Continuous time Markov chains (CTMCs) are stochastic processes with discrete
states and exponentially distributed waiting times between the jumps. In systems
biology, they are routinely used to describe the time evolution of molecule counts
within a cell. Due to their discrete nature and the large number of states, learning
CTMCs from biological data is still challenging [6]. The goal of this project is
to explore relaxation techniques for CTMC simulation. This may pave the way
for powerful simulation-based inference techniques and combinations of CTMCs
with deep learning architectures.

Requirements:

• Background in statistical machine learning or probabilistic modeling

• Basic Python programming

For further information, please contact Christian Wildner.
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